

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

Tel.: (34) 91 302 04 40 direccion.ietcc@csic.es

C/ Serrano Galvache n. 4 28033 Madrid (Spain) Fax: (34) 91 302 07 00

European Technical Assessment

ETA 18/1108 of 11/03/2019

English translation prepared by IETcc. Original version in Spanish language

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011:

Trade name of the construction product:

Product family to which the construction product belongs:

Manufacturer:

Manufacturing plants:

This European Technical Assessment contains:

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of:

Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

Anchor SLPT, anchor SLPC

Torque controlled expansion anchor made of galvanized steel of sizes M6, M8, M10, M12, M16 and M20 for use in concrete.

Index - Técnicas Expansivas S.L.

Segador 13

26006 Logroño (La Rioja) Spain. website: www.indexfix.com

Index plant 2

11 pages including 4 annexes which form an integral part of this assessment.

European Technical Assessment EAD 330232-00-0601 "Mechanical Fasteners for use in concrete", ed. October 2016

Page 2 of European Technical Assessment ETA 18/1108 of 11th March 2019

English translation prepared by IETcc

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The Index SLPT heavy duty anchor in the range of M6, M8, M10, M12, M16 and M20 is an anchor made of galvanised steel. SLPT anchor comes with hexagonal head and SLPC anchor comes with countersunk head. The anchor is installed into a predrilled cylindrical hole and anchored by torque-controlled expansion. The anchorage is characterised by friction between the expansion tube and the concrete.

Product and installation descriptions are given in annexes A1 and A2.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension loads	See annex C2
Characteristic resistance to shear loads	See annex C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance				
Reaction to fire	Anchorages satisfy requirements for class A1 according to EN 13501-1				
Resistance to fire	See annex C4				

4. Assessment and Verification of Constancy of Performances (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V to Regulation (EU) No 305/2011) is 96/582/EC.

The system to be applied is 1.

English translation prepared by IETcc

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

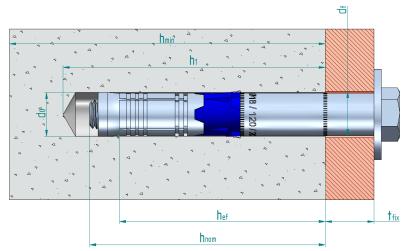
C/ Serrano Galvache n.º 4. 28033 Madrid.
Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00
https://dit.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 11th of March 2019

Director

Product and installed condition

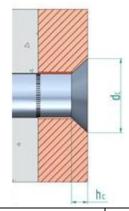
SLPT anchor



SLPC anchor

Identification on anchor:

- Sleeve: "T" (bolt version) "C" (countersunk version) Outer diameter / Total length / Maximum fixture to be fixed.
- Plastic ring: anchor name "SLP", company logo



 $\begin{array}{ll} d_0 \colon & \text{Nominal diameter of drill bit} \\ d_f \colon & \text{Fixture clearance hole diameter} \\ h_{\text{ef}} \colon & \text{Effective anchorage depth} \\ h_1 \colon & \text{Depth of drilled hole} \end{array}$

 h_{nom} : Overall anchor embedment depth in the concrete

h_{min}: Minimum thickness of concrete member

t_{fix}: Fixture thickness

SLPT anchor

Product description

Installed condition

Annex A1

Table A1: Materials

Item	Designation	Material for SLPT	Material for SLPC				
1	Bolt	DIN 931 ISO 898-1 class 8.8. Galvanized ≥ 5 µm ISO 4042 A2	DIN 7991 ISO 898-1 class 10.9. Galvanized ≥ 5 μm ISO 4042 A2				
2	Washer	DIN 9021. Galvanized ≥ 5 µm ISO 4042 A2	Special conical washer. Galvanized ≥ 5 µm ISO 4042 A2				
3	Sleeve	Carbon steel. Galvanized ≥ 5 μm ISO 4042 A2					
4	Plastic ring	РОМ					
5	Expansion tube	Carbon steel. Galvanized ≥ 5 µm ISO 4042 A2					
6	Cone	Hardened carbon steel. Galvanized ≥ 5 μm ISO 4042 A2					

SLPT anchor	
Product description	Annex A2
Materials	

Specifications of intended use

Anchorages subjected to:

- Static or quasi static loads
- Resistance to fire exposure up to 120 minutes

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2008
- Strength classes C20/25 to C50/60 according to EN 206-1:2008
- Cracked or uncracked concrete

Use conditions (environmental conditions):

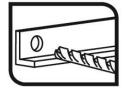
Anchorages subjected to dry internal conditions.

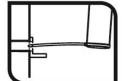
Design:

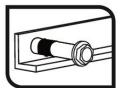
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method A in accordance with EN 1992-4:2018
- Anchorages under fire exposure are designed in accordance with EN-1992-4:2018. It must be ensured that local spalling of the concrete cover does not occur.

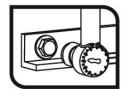
Installation:

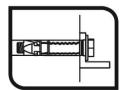
- Hole drilling by rotary plus hammer mode.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.


SLPT anchor	
Intended use	Annex B1
Specifications	


Table C1: Installation parameters


		Performances							
Instal	llation parameters		M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28	
d ₀	Nominal diameter of drill bit:	[mm]	10	12	16	18	24	28	
df	Fixture clearance hole diameter ≤	[mm]	12	14	18	20	26	31	
Tinst	Nominal installation torque:	[Nm]	15	30	50	80	160	240	
h _{min}	Minimum thickness of concrete member:	[mm]	100	120	140	170	200	250	
h ₁	Depth of drilled hole ≥	[mm]	70	85	95	110	130	160	
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	59	72	83	97	117	146	
h _{ef}	Effective anchorage depth:	[mm]	50	60	70	85	100	125	
t _{fix}	Thickness of fixture ¹⁾ ≤	[mm]	L - 60	L - 75	L - 85	L - 100	L - 120	L - 150	
Smin	Minimum allowable spacing:	[mm]	100	120	175	200	220	320	
Cmin	Minimum allowable edge distance:	[mm]	50	60	70	80	100	160	
dc	Diameter of countersunk head in the fixture:	[mm]	16.4	20.6	26.8	30.8	38.8	44.8	
hc	Height of countersunk head in the fixture:	[mm]	3.2	4.3	5.4	6.4	7.4	8.4	
SW	SLPT socket size:	[]	10	13	17	19	24	30	
SW	SLPC countersunk key:	[]	4	5	6	8	10	12	


¹⁾ L = total anchor length


Installation process

SLPT anchor	
Performances	Annex C1
Installation parameters and installation procedure	

Table C2: Characteristic values to tension loads of design method A according to EN 1992-4

				Performances						
	Characteristic values of resistance to tension oads of design according to design method A				M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28	
Tension	n loads: steel failure									
$N_{Rk,s}$	Characteristic resistance	:	[kN]	16.1	29.3	46.4	67.4	126.0	196.0	
γMs	Partial safety factor:		[-]			1	.5			
Tension	n loads: pull-out failur	e in concre	te							
$N_{Rk,p,ucr}$	Characteristic resistance uncracked concrete:	e in C20/25	[kN]	1)	1)	1)	1)	1)	1)	
$N_{Rk,p,cr}$	Characteristic resistance cracked concrete:	e in C20/25	[kN]	1)	1)	1)	1)	1)	1)	
γins	Installation safety factor	:	[-]	1.0	1.0	1.0	1.0	1.2	1.2	
	Increasing factor for	C30/37	[-]	1.22	1.22	1.22	1.22	1.08	1.08	
ψ_c	Increasing factor for N ⁰ _{Rk,p} :	C40/50	[-]	1.41	1.41	1.41	1.41	1.15	1.15	
	т	C50/60	[-]	1.58	1.58	1.58	1.58	1.20	1.20	
Tension	n loads: concrete con	e and splitti	ng failure	!						
h _{ef}	Effective embedment dep	pth:	[mm]	50	60	70	85	100	125	
k _{ucr,N}	Factor for uncracked con	ncrete:	[-]	11.0						
k _{cr.N}	Factor for cracked concre	ete:	[-]	7.7						
γins	Installation safety factor:		[-]	1.0	1.0	1.0	1.0	1.2	1.2	
Scr,N	Concrete cone failure:		[mm]			3 >	κ h _{ef}			
Ccr,N	Concrete corre randre.	Concrete cone failure.				1.5	x h _{ef}			
Scr,sp	Splitting failure:		[mm]	205	245	285	345	410	510	
Ccr,sp	Spinning railure.		[mm]	105	125	145	175	205	255	

The pull out failure mode is not decisive

Table C3: Displacements under tension load

				Performances							
Displ	acements under tension loads		M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28			
N	Service tension load in uncracked concrete C20/25 to C50/60:	[kN]	7,67	10,90	13,71	18,38	19,52	27,30			
δνο	Short term displacement:	[mm]	1,18	2,02	1,79	1,15	2,46	2,12			
δ_{N^∞}	Long term displacement:	[mm]	2,68	2,68	2,68	2,68	2,68	2,68			
N	Service tension load in cracked concrete C20/25 to C50/60:	[kN]	5,81	7,62	9,62	12,86	13,65	19,09			
δ_{N0}	Short term displacement:	[mm]	1,75	2,69	2,57	3,53	1,76	2,41			
δ _{N∞}	Long term displacement:	[mm]	3,75	4,69	4,57	5,53	3,76	4,41			

SLPT anchor	
Performances	Annex C2
Characteristic values for tension loads	

Table C4: Characteristic values to shear loads of design method A according to EN 1992-4

Charac	cteristic values of resistance	to shear	Performances					
loads o	loads of design according to design method A			M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28
Shear	loads: steel failure without I	ever arm						
V _{Rk,s}	Characteristic resistance:	[kN]	20.2	33.0	62.2	75.1	111.2	141.7
k ₇	Ductility factor:	[-]			1	.0		
γMs	Partial safety factor:	[-]	1.25					
Shear	Shear loads: steel failure with lever arm							
M ⁰ Rk,s	Characteristic bending moment:	[Nm]	12.2	30.0	59.8	104.8	266.4	519.3
γMs	Partial safety factor:	[-]			1	.25		
Shear	loads: concrete pryout failu	re						
k ₈	Pryout factor:	[-]	1.0	2.0	2.0	2.0	2.0	2.0
γins	Installation safety factor:	[-]			1	.0	•	•
Shear	loads: concrete edge failure	;						
lf	Effective length of anchor under shear loads:	[mm]	50	60	70	85	100	125
d _{nom}	Outside anchor diameter:	[mm]	10	12	16	18	24	28
γins	Installation safety factor:	[-]			1	.0		

Table C5: Displacements under shear load

			Performances							
Displac	ements under shear loads		M6 Ø10	M8 Ø12	M10 Ø16	M12 Ø18	M16 Ø24	M20 Ø28		
V	Service shear load in uncracked and cracked concrete C20/25 to C50/60:	[kN]	9,62	15,71	29,62	35,76	44,13	56,23		
δνο	Short term displacement:	[mm]	2,15	1,22	1,31	1,72	1,41	1,96		
δ∨∞	Long term displacement:	[mm]	3,23	1,83	1,96	2,58	2,11	2,93		

SLPT anchor	
Performances	Annex C3
Characteristic values for shear load.	

Table C8: Characteristic values for resistance under fire exposure

					Performances					
Characteristic values for resistance to fire			M6	M8	M10	M12	M16	M20		
				Ø10	Ø12	Ø16	Ø18	Ø24	Ø28	
Steel fa	ilure			I		1	I	· I		
$N_{Rk,s,fi}$	Characteristic tension resistance:	R30	[kN]	0,2	0,4	0,9	1,7	3,1	4,9	
		R60	[kN]	0,2	0,3	0,8	1,3	2,4	3,7	
		R90	[kN]	0,1	0,3	0,6	1,1	2,0	3,2	
		R120	[kN]	0,1	0,2	0,5	0,8	1,6	2,5	
	Characteristic shear	R30	[kN]	0,2	0,4	0,9	1,7	3,1	4,9	
$V_{\text{Rk,s,fi}}$		R60	[kN]	0,2	0,3	0,8	1,3	2,4	3,7	
V RK,S,TI	resistance:	R90	[kN]	0,1	0,3	0,6	1,1	2,0	3,2	
		R120	[kN]	0,1	0,2	0,5	0,8	1,6	2,5	
	Characteristic bending resistance:	R30	[kN]	0,2	0,4	1,1	2,6	6,7	13,0	
N 40		R60	[kN]	0,1	0,3	1,0	2,0	5,0	9,7	
M^0 Rk,s,fi		R90	[kN]	0,1	0,3	0,7	1,7	4,3	8,4	
		R120	[kN]	0,1	0,2	0,6	1,3	3,3	6,5	
Pull out	failure									
	Characteristic resistance:	R30								
$N_{Rk,p,fi}$		to	[kN]	1)						
		R120								
Concre	te cone failure									
	Characteristic resistance:	R30								
$N_{Rk,p,fi}$		R60	[kN]	3,0	4,8	7,1	11,5	17,2	30,1	
		R90								
		R120	[kN]	2,4	3,8	5,6	9,2	13,8	24,1	
Scr.N,fi	Critical spacing:	R30 to R120	[mm]	4 x h _{ef}						
Ccr.N,fi	Critical edge distance:	R30 to R120	[mm]	2 x h _{ef}						
Smin,fi	Minimum spacing:	R30 to R120	[mm]	100	120	175	200	220	320	
Cmin,fi	Minimum edge distance:	R30 to R120	[mm]	$c_{min} = 2 \text{ x h}_{ef}$; if fire attack comes from more than one side, the edge distance of the anchor has to be $\geq 300 \text{ mm}$ and $\geq 2 \text{ x h}_{ef}$						
Concre	te pryout failure									
k ₈	Pryout factor:	R30 to R120	[-]	1.0	2.0	2.0	2.0	2.0	2.0	

¹⁾ The pull out failure mode is not decisive

- 2) As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed.
- 3) In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi} = 1,0$ is recommended

SLPT anchor	
Performances	Annex C4
Characteristic values for resistance to fire	